A Kernelized Unified Framework for Domain Adaptation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

A General Regularization Framework for Domain Adaptation

We propose a domain adaptation framework, and formally prove that it generalizes the feature augmentation technique in (Daumé III, 2007) and the multi-task regularization framework in (Evgeniou and Pontil, 2004). We show that our framework is strictly more general than these approaches and allows practitioners to tune hyper-parameters to encourage transfer between close domains and avoid negati...

متن کامل

An Extended Framework for Marginalized Domain Adaptation

We propose an extended framework for marginalized domain adaptation, aimed at addressing unsupervised, supervised and semisupervised scenarios. We argue that the denoising principle should be extended to explicitly promote domain-invariant features as well as help the classification task. Therefore we propose to jointly learn the data auto-encoders and the target classifiers. First, in order to...

متن کامل

A Two-Stage Weighting Framework for Multi-Source Domain Adaptation

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution but may have plenty of labeled data from multiple related sources with different distributions. The difference in distributions may be both in marginal and conditional probabilities. Most of ...

متن کامل

A New Framework for Domain Adaptation without Model Retraining

We propose a principled and effective domain adaptation framework that pursues the goal of Open Domain NLP (train once, test anywhere). Most domain adaptation frameworks adapt the models trained on the source domain data by retraining it on target domains (with a mix of labeled and unlabeled data). However, it is time consuming to retrain big models or pipeline systems, and may not even be feas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2958736